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What is graph mining?
● Extracting useful knowledge (patterns, outliers,

etc.) from structured data that can be
represented as a graph.

● For our purposes, this is usually a social network.`

Facebook graph, via Touchgraph

Livejournal, via Lehman and Kottler
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What is graph mining?
● Example: Social media host tries to look at

certain online groups and predict whether the
group will flourish or disband.

● Example: Phone provider looks at cell phone call
records to determine whether an account is a
result of identity theft.
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Why graph mining?
● Thanks to the web and social media, for the first

time we have easily accessible network data on a
large-scale.

● Understand relationships (links) as well as
content (text, images).

● Large amounts of data raise new questions.

Need for
organization

Massive amount
of data
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Motivating questions
● Q1: How do networks form, evolve, collapse?
● Q2: What tools can we use to study networks?
● Q3: Who are the most influential/central

members of a network?
● Q4: How do ideas diffuse through a network?
● Q5: How can we extract communities?
● Q6: What sort of anomaly detection can we

perform on networks?



1- 6McGlohon, Faloutsos  ICWSM 2008

Outline
● Part 1: Q1: How do networks form, evolve,

collapse?
– Introduction to networks
– Patterns, Laws

● Part 2: Q2: What tools can we use to study
networks?
– Q3: Ranking: Who are the most important members of a network?

● Part 3: Case studies
– Q4: Diffusion: How do ideas diffuse through a network?
– Q5: How can we extract communities?
– Q6: What sort of anomaly detection can we perform?
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Part 1 Outline
● Introduction to networks and 6 definitions
● Patterns

– Diameter
– Degree distribution
– Connected components
– Evolution over time
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D1: Network
● A network is defined as a graph G=(V,E)

– V : set of vertices, or nodes.
– E : set of edges.

● Edges may have numerical weights.
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D2: Adjacency matrix
● To represent graphs, use adjacency matrix
● Unweighted graphs: all entries are 0 or 1
● Undirected graphs: matrix is symmetric

      B1  B2  B3  B4

B1  0    1    0    0
B2  1    0    0    0
B3  0    0    1    0
B4  1    2    0    3

from

to
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D3: Bipartite graphs
● In a bipartite graph,

– 2 sets of vertices
– edges occur between different sets.

● If graph is undirected, we can represent as a non-
square adjacency matrix.

n1

n2

n3

n4

m
1

m
2

m
3

      m1  m2  m3

n1  1     1     0
n2  0     0     1
n3  0     0     0
n4  0     0     1
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D4: Components
● Component: set of nodes with paths between

each.

n1

n2

n3

n4

m
1

m
2

m
3
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D4: Components
● Component: set of nodes with paths between

each.
● We will see later that often real graphs form a

giant connected component.
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D5: Diameter
● Diameter of a graph is the “longest shortest path”.
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D5: Diameter
● Diameter of a graph is the “longest shortest path”.

n1

n2

n3

n4

m
1

m
2

m
3

diameter=3
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D5: Diameter
● Diameter of a graph is the “longest shortest path”.
● We can estimate this by sampling.
● Effective diameter is the distance at which 90%

of nodes can be reached.

n1

n2

n3

n4
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m
2

m
3

diameter=3
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D6: Degree distribution
● We can find the degree of any node by summing

entries in the (unweighted) adjacency matrix.

      B1  B2  B3  B4

B1  0    1    0    0      1
B2  1    0    0    0      1
B3  0    0    1    0      1
B4  1    1    0    1      3
      2    2    1    1

from

to
out-degree

in-degree
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Some graphs

Internet Map [lumeta.com] Food Web [Martinez ’91]

Protein Interactions
[genomebiology.com]Friendship Network [Moody ’01]

Research question:
Are real graphs random?

(no)
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Part 1 Outline
● Introduction to networks
● Patterns

– Diameter
– Degree distribution
– Connected components
– Evolution over time
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Small-world effect
● Graphs usually display small diameter.
● First demonstrated by Travers & Milgram in 1960.

– Most of the time, distance was around 6.

● Similarly, real graphs we see have small
diameter…
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[Leskovec & Horvitz 07]
Distribution of
shortest path lengths

Microsoft Messenger
network
 180 million people
 1.3 billion edges
 Edge if two people

exchanged at least
one message in one
month period Distance (Hops)

N
um

be
r o

f n
od

es

Pick a random
node, count
how many

nodes are at
distance

1,2,3... hops

7
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Part 1 Outline
● Introduction to networks
● Patterns

– Diameter: “small world effect”
– Degree distribution
– Connected components
– Evolution over time
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Degree distribution
● Suppose average

degree is 3.3
● If we pick a node at

random, can we
guess its degree?

Count vs. degree

avg: 3.3

● In real graph, “mode” is 1!
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Degree distribution
● Suppose average

degree is 3.3
● If we pick a node at

random, can we
guess its degree?

Count vs. degree

avg: 3.3

● In real graph, “mode” is 1!
● Therefore, mean is

“meaningless”.

What pattern does 
degree of real 
graphs follow?
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Power law degree
distribution

● Measure with rank exponent R
●  [SIGCOMM99]

internet domains

log(rank)

log(degree)

-0.82

att.com

ibm.com



1- 25McGlohon, Faloutsos  ICWSM 2008

Power laws - discussion
● Do they hold, over time?

● Do they hold on other graphs/domains?
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Power laws - discussion
● Do they hold, over time?

– Yes! for multiple years [Siganos+]

● Do they hold on other graphs/domains?
– Yes!
– Web sites and links [Tomkins+], [Barabasi+]
– Peer-to-peer graphs (gnutella-style)
– Who-trusts-whom (epinions.com)
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Time Evolution: rank R

• The rank exponent has not changed!
[Siganos+]

Domain
level

log(rank)

log(degree)

-0.82

att.com

ibm.com
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The Peer-to-Peer Topology

• Number of immediate peers (= degree), follows a
power-law

[Jovanovic+]

degree

count
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epinions.com
● who-trusts-whom

[Richardson +
Domingos, KDD 2001]

(out) degree

count
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Part 1 Outline
● Introduction to networks
● Patterns

– Diameter: “small world effect”
– Degree distribution: power law
– Connected components
– Evolution over time
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Components
● Basic graph generator, Erdos-Renyi

– For n vertices, connect any two IID with probability p.

● Many provable properties, including emergence
of a giant connected component.

Real graphs do not
have E-R degree
distribution, but...
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Giant connected component
● Nearly all real networks have a giant connected

component (GCC) emerge!
● Often SM graphs have “middle region”

– See [Kumar, Novak, & Tomkins, KDD 2006]

(Example: NIPS citation graph,
visualization with GUESS [Adar 06]
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Part 1 Outline
● Introduction to networks
● Patterns

– Diameter: “small world effect”
– Degree distribution: power law
– Connected components: giant CC
– Evolution over time
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Motivating questions

• How do graphs evolve?
• Degree-exponent seems constant - any other

consistent patterns?
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Evolution of diameter?

• Prior analysis, on power-law-like graphs, hints
diameter slowly increasing with time.

diameter ~ O(log(N))     or
diameter ~ O( log(log(N)))

• Slowly increasing with network size
• What is happening, in reality?

Diameter shrinks, toward a constant value!

X
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Shrinking diameter
[Leskovec, Faloutsos,

Kleinberg KDD 2005]
● Citations among physics

papers
● 11yrs; @ 2003:

– 29,555 papers
– 352,807 citations

● For each month M, create a
graph of all citations up to
month M

time

diameter
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Shrinking diameter
• Authors &

publications
• 1992
– 318 nodes
– 272 edges
• 2002
– 60,000 nodes
• 20,000 authors
• 38,000 papers

– 133,000 edges
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Shrinking diameter
• Patents & citations
• 1975
– 334,000 nodes
– 676,000 edges
• 1999
– 2.9 million nodes
– 16.5 million edges
• Each year is a

datapoint
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Shrinking diameter
• Autonomous

systems
• 1997
– 3,000 nodes
– 10,000 edges
• 2000
– 6,000 nodes
– 26,000 edges
• One graph per day

N

diameter
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Temporal evolution
●N(t) nodes; E(t) edges at time t
●Suppose that

N(t+1) = 2 * N(t)
●What is your guess for

E(t+1) =? 2 * E(t)
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Temporal evolution
●N(t) nodes; E(t) edges at time t
●Suppose that

N(t+1) = 2 * N(t)
●What is your guess for

E(t+1) =? 2 * E(t)
●Edges over-double!

X
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Temporal evolution

●Growth of edges obeys power law with:
E(t) ~ N(t)a            for all t

where 1<a<2
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Densification Power Law
ArXiv: Physics papers
and their citations

1.69

N(t)

E(t)
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Densification Power Law
ArXiv: Physics papers
and their citations

1.69

N(t)

E(t)

‘tree’

1
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Densification Power Law
ArXiv: Physics papers
and their citations

1.69

N(t)

E(t)
‘clique’

2
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Densification Power Law
U.S. Patents, citing each

other

1.66

N(t)

E(t)
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Densification Power Law
Autonomous Systems

1.18

N(t)

E(t)
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Densification Power Law
ArXiv: authors & papers

1.15

N(t)

E(t)
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Part 1 Outline
● Introduction to networks
● Patterns

– Diameter: “small world effect”
– Degree distribution: power law
– Connected components: giant CC
– Evolution over time: Shrinking diameter,

Densification power law
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Another big question
● Q: How can we generate realistic networks?
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Another big question
● Q: How can we generate realistic networks?
● A: Answering this question fully would require

another tutorial. 
● Some models are preferential attachment

(Barabasi et. al.), copying model (Kleinberg et.
al.), “winners don’t take all” (Pennock et. al.),
Kronecker multiplication (Leskovec et. al.).
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