

Outline

- Part 1: How do networks form, evolve, collapse?
- Part 2: What tools can we use to study networks?
- Matrix decomposition
- Principal Component Analysis
- Random walks and ranking algorithms
- Co-clustering and cross-association
- Self-similarity
- Entropy plots
- Part 3: Case studies

Examples of Matrices

- Example/Intuition: Documents and terms
- Find patterns, groups, concepts
data info. brain lung

Paper\#1
Paper\#2
Paper\#3
Paper\#4

	13		11		22	
	5		4		6	
\ldots		\ldots		\ldots		\ldots
\ldots	\ldots	\ldots	\ldots	\ldots		
\ldots	\ldots	\ldots	\ldots	\ldots		

SVD - Example

- $\mathbf{A}=\mathbf{U} \Sigma \mathbf{V}^{\top}$ - example:
retrieval
data ${ }^{\text {inf. }} \downarrow$ brain lung

SVD - Example

- $\mathbf{A}=\mathbf{U} \Sigma \mathbf{V}^{\top}$ - example:
retrieval CS-concept
data $^{\text {inf. }} \downarrow$ brain lung
MD-concept

$$
\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 0 & 0 & 2 & 2 \\
0 & 0 & 0 & 3 & 3 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
0.18 & 0 \\
0.36 & 0 \\
0.18 & 0 \\
0.90 & 0 \\
0 & 0.53 \\
0 & 0.80 \\
0 & 0.27
\end{array}\right] \mathrm{x}\left[\begin{array}{lll}
9.64 & 0 \\
0 & 5.29
\end{array}\right] \mathrm{x}
$$

SVD - Example

- $\mathbf{A}=\mathbf{U} \Sigma \mathbf{V}^{\top}$ - example:
retrieval CS-concept data $^{\text {inf. }} \downarrow$ brain ${ }^{\text {lung }}$
$\left[\begin{array}{lllll}1 & 1 & 1 & 0 & 0 \\ 2 & 2 & 2 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 1 & 1\end{array}\right]=\left[\begin{array}{ll}0.18 & 0 \\ 0.36 & 0 \\ 0.18 & 0 \\ 0.90 & 0 \\ 0 & 0.53 \\ 0 & 0.80 \\ 0 & 0.27\end{array}\right] \times\left[\begin{array}{ll}9.64 & 0 \\ 0 & 5.29 \\ & \end{array}\right] \mathrm{x}$

SVD - Example

- $\mathbf{A}=\mathbf{U} \Sigma \mathbf{V}^{\top}$ - example:
retrieval
data ${ }^{\text {inf. }} \downarrow$ brain lung

‘strength’ of CS-concept

SVD - Example

- $\mathbf{A}=\mathbf{U} \Sigma \mathbf{V}^{\top}$ - example:
retrieval
data ${ }^{\text {inf. }} \downarrow$ brain lung
term-to-concept
similarity matrix

SVD - Example

- $\mathbf{A}=\mathbf{U} \Sigma \mathbf{V}^{\top}$ - example:
retrieval
inf. ${ }^{\text {b }}$ brain lung
term-to-concept
similarity matrix

SVD - Interpretation

'documents', 'terms' and 'concepts':
Q: if \mathbf{A} is the document-to-term matrix, what is $\mathbf{A}^{\top} \mathbf{A}$?

A: term-to-term ([m x m]) similarity matrix
Q: $\mathbf{A ~ A}^{\top}$?
A: document-to-document ([$\mathrm{n} \times \mathrm{n}$]) similarity matrix

Singular Value Decomposition (SVD)

Decomposition for 3+ "modes"

- A tensor is a N-D generalization of matrix:

Specially Structured Tensors

Conference x

- Tucker Tensor

$$
\begin{aligned}
\mathcal{X} & =\mathcal{G} \times_{1} \mathbf{U} \times_{2} \mathbf{V} \times{ }_{3} \mathbf{W} \\
& =\sum_{r} \sum_{s} \sum_{t} g_{r s t} \mathbf{u}_{r} \circ \mathbf{v}_{s} \circ \mathbf{w}_{t} \\
& \equiv \llbracket \mathcal{G} ; \mathbf{U}, \mathbf{V}, \mathbf{W} \rrbracket\} \begin{array}{c}
\text { Our } \\
\text { Notation }
\end{array}
\end{aligned}
$$

$$
1 \times J \times k
$$

Author x
Keyword x Conference

Author x
Author-groups

"Core": interaction tensor

For details, refer to Jimeng Sun and Tamara Kolda's tutorial: http://www.cs.cmu.edu/~jimeng/papers/ICMLtutorial.pdf

Preliminaries- PCA

- Principal Component Analysis is a method of dimensionality reduction, based on SVD.

Principal Component Analysis (PCA)

- SVD

$\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$

- PCA is an important application of SVD
- Note that U and V are dense and may have negative entries

Outline for Part 2

- Matrix decomposition
- Principal Component Analysis
- Random walks and ranking algorithms
- HITS, TOPHITS
- Pagerank
- Co-clustering and cross-association
- Self-similarity
- Entropy plots

Kleinberg's algorithm HITS

- Problem def: given the web and a query
- Find the most 'authoritative' web pages for this query

[^0]- Step 0: find all pages containing the query terms
- Step 1: expand by one move forward and backward

Kleinberg's algorithm HITS

- On the resulting graph, give high score (= 'authorities') to nodes that many important nodes point to
- Give high importance score ('hubs') to nodes that point to good 'authorities'

authorities

Observations

- Recursive definition!
- Each node (say, ' i '-th node) has both an authoritativeness score a_{i} and a hubness score h_{i}

Let \mathbf{A} be the adjacency matrix:
the (i, j) entry is 1 if the edge from i to j exists
Let \mathbf{h} and \mathbf{a} be [$\mathrm{n} x$ 1] vectors with the 'hubness' and 'authoritativiness' scores.

Then:

Kleinberg's algorithm: $\overbrace{n}^{\text {Deails }} \underset{\sim}{2}$

Then:

$$
a_{i}=h_{k}+h_{l}+h_{m}
$$

that is
$a_{i}=$ Sum $\left(h_{j}\right) \quad$ over all j that (j, i)
edge exists

$$
\begin{aligned}
& \text { or } \\
& \mathbf{a}=\mathbf{A}^{\top} \mathbf{h}
\end{aligned}
$$ symmetrically, for the 'hubness':

```
i n
p
hi}=\operatorname{Sum}(\mp@subsup{q}{j}{})\quad\mathrm{ over all j that (i,j)
edge exists
or
\(h=\mathbf{A} \mathbf{a}\)
```


Kleinberg's algorithm:

In conclusion, we want vectors h and a such that:

$$
\begin{aligned}
\mathbf{h} & =\mathbf{A} \mathbf{a} \\
\mathbf{a} & =\mathbf{A}^{\top} \mathbf{h}
\end{aligned}
$$

That is:

$$
\mathbf{a}=\mathbf{A}^{\top} \mathbf{A} \mathbf{a}
$$

\mathbf{a} is a right singular vector of the adjacency matrix \mathbf{A} (by dfn!), a.k.a the eigenvector of $\mathbf{A}^{\mathbf{T}} \mathbf{A}$
\mathbf{h}, then, is the left singular vector.

HITS results

Authority scores for query 'java':
0.328 www.gamelan.com
0.251 java.sun.com
0.190 www.digitalfocus.com ("the java developer")

Outline for Part 2

- Matrix decompos How to exploit anchortext?
- Principal Componerira
- Random walks and rarnimg algorithms
- HITS, TOPHITSo
- Pagerank
- Co-clustering and cross-association
- Self-similarity
- Entropy plots

Three-Dimensional View of the Web

Kolda, Bader, Kenny, ICDM05

$$
x_{i j k}= \begin{cases}1 & \text { if page } i \rightarrow \text { page } j \\ 0 & \text { with term } k \\ 0 & \text { otherwise }\end{cases}
$$

Observe that this tensor

Topical HITS (TOPHITS)

Main Idea: Extend the idea behind the HITS model to incorporate term (i.e., topical) information.

$$
\mathcal{X} \approx \sum_{r=1}^{R} \lambda_{r} \mathbf{h}_{r} \circ \mathbf{a}_{r}
$$

Topical HITS (TOPHITS)

Main Idea: Extend the idea behind the HITS model to incorporate term (i.e., topical) information.

$$
\boldsymbol{X} \approx \sum_{r=1}^{R} \lambda_{r} \mathbf{h}_{r} \circ \mathbf{a}_{r} \circ \mathrm{t}_{r}
$$

Carnegie Mellon
 TOPHITS Terms \& Authorities

Outline for Part 2

- Matrix decomposition
- Principal Component Analysis
- Random walks and ranking algorithms
- HITS, TOPHITS
- Pagerank
- Co-clustering and cross-association
- Self-similarity
- Entropy plots

Pagerank motivation

Given a directed graph, find its most interesting/central node

A node is important, if it is connected with important nodes
(recursive, but OK!)

Motivating problem - PageRank solution

Given a directed graph, find its most interesting/central node
Proposed solution: Random walk; spot most 'popular' node (-> steady state prob. (ssp))

A node has high ssp, if it is connected with high ssp nodes (recursive, but OK!)

(Simplified) PageRank algorithm

- Let \mathbf{A} be the transition matrix (= adjacency matrix); let \mathbf{B} be the transpose, column-normalized - then

(Simplified) PageRank
 algorithm

- $\mathbf{B} \mathbf{p}_{\mathrm{t}}=\mathbf{p}_{\mathrm{t}+1}$

- $\mathbf{B} \mathbf{p}=1$ * \mathbf{p} algorithm
- thus, \mathbf{p} is the eigenvector that corresponds to the highest eigenvalue ($=1$, since the matrix is columnnormalized)

(Simplified) PageRan $\overbrace{\sim}^{\text {Doails }} \sim$

- In short: imagine a particle randomly moving along the edges
- Compute its steady-state probabilities (ssp)

Full version: with occasional random jumps
This will make the matrix irreducible

Full Algorithm

- With probability $1-c$, fly-out to a random node
- Then, we have

$$
\begin{aligned}
& \mathbf{p}=\mathbf{c} \mathbf{B} \mathbf{p}+(1-c) / n \mathbf{1}=> \\
& \mathbf{p}=(1-c) / n[\mathbf{I}-\mathrm{c} \mathbf{B}]^{-1} \mathbf{1}
\end{aligned}
$$

Outline for Part 2

- Matrix decomposition
- Principal Component Analysis
- Random walks and ranking algorithms
- Co-clustering and cross-association
- Self-similarity
- Entropy plots

Co-clustering

- Given data matrix and the number of row and column groups k and l
- Simultaneously
- Cluster rows of $p(X, Y)$ into k disjoint groups
- Cluster columns of $p(X, Y)$ into l disjoint groups

Carnegie Mellon

$m\left[\begin{array}{cccccc}.05 & .05 & .05 & 0 & 0 & 0 \\ .05 & .05 & .05 & 0 & 0 & 0 \\ 0 & 0 & 0 & .05 & .05 & .05 \\ 0 & 0 & 0 & .05 & .05 & .05 \\ .04 & .04 & 0 & .04 & .04 & .04 \\ .04 & .04 & .04 & 0 & .04 & .04\end{array}\right]$
k
n
eg, terms x documents (normalized)
approximation q
$\left[\begin{array}{ccc|ccc}.054 & .054 & .042 & 0 & 0 & 0 \\ .054 & .054 & .042 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & .042 & .054 & .054 \\ 0 & 0 & 0 & .042 & .054 & .054 \\ \hline .036 & .036 & 028 & .028 & .036 & .036 \\ .036 & .036 & .028 & .028 & .036 & .036\end{array}\right]$
term group x doc. group ($\mathrm{k} \times \mathrm{I}$)

med. terms

cs terms

common terms

$\left[\begin{array}{ccc}.5 & 0 & 0 \\ .5 & 0 & 0 \\ 0 & .5 & 0 \\ 0 & .5 & 0 \\ 0 & 0 & .5 \\ 0 & 0 & .5\end{array}\right]\left[\begin{array}{cc}.3 & 0 \\ 0 & .3 \\ .2 & .2\end{array}\right]\left[\begin{array}{cccccc}36 & .36 & .28 & 0 & 0 & 0 \\ 0 & 0 & 0 & .28 & .36 & .36\end{array}\right]=\left[\begin{array}{ccc|ccc}.054 & .054 & .042 & 0 & 0 & 0 \\ .054 & .054 & .042 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & .042 & .054 & .054 \\ 0 & 0 & 0 & .042 & .054 & .054 \\ \hline .036 & .036 & 028 & .028 & .036 & .036 \\ .036 & .036 & .028 & .028 & .036 & .036\end{array}\right]$
term x
term-group

Co-clustering

- Details: Dhillon et. al. Information-Theoretic Coclustering, KDD 2003.
- Uses KL divergence, instead of L2
- The middle matrix is not diagonal
- Must specify k and I (number of row, column groups).

Cross-association

Desiderata:
\checkmark Simultaneously discover row and column groups
\checkmark Fully Automatic: No "magic numbers"
\checkmark Scalable to large matrices

Cross-association

- Main idea:
- Automatically decide k and $/$ and reorder rows to reach best compression.
- Details: Chakrabarti et. al. Fully automatic crossassociations. KDD04.

Cross-association $\stackrel{\text { Deais }}{\sim}$

- Start with $\mathrm{k}=1, \mathrm{l}=1$
- Shuffle rows and columns
- Split:
- Pick row group g with maximum entropy
- Pick rows from g that maximize the entropy, make new group
- (Repeat for columns)
- Repeat until total description of matrix (each group description + describing groups) is minimized

Cross-association Results

- NSF Grant proposals
- 13,297 documents
- 5,298 words
- 805,063 entries

Cross-association Results

- NSF grants-words
- Found groups:
$k=41, l=28$
manifolds, operators,

undergraduate, education,
national, projects

Cross-association Results

- Crossassociations refer to topics:
- Mathematics
- Physics
- Genetics

Algorithm

Code for cross-associations (matlab):

www. cs. cmu. edu/ deepay/mywww/software/CrossAssociatio

 ns-01-27-2005. tgzVariations and extensions:

- 'Autopart' [Chakrabarti, PKDD'04]
- www. cs. cmu. edu/ ${ }^{\sim}$ deepay

Outline for Part 2

- Matrix decomposition
- Principal Component Analysis
- Random walks and ranking algorithms
- Co-clustering and cross-association
- Self-similarity
- Entropy plots
- How to identify less obvious patterns -- for instance, in time series data?

(a) in-links

(b) conv. mass

(c) num. posts

Carnegie Mellon

Self-similarity

- Self-similarity helps describe patterns.
- Example: disk traces
\#bytes

Self-similarity

- Example: blog link traffic
-How can we generate self-similar sequences?

Self-similarity

- The 80-20 law describes self-similarity.
- For any sequence, we divide it into two equal-length subsequences. 80% of traffic is in one, 20% in the other.
- Repeat recursively.

Self-similarity

- The bias factor for the $80-20$ law is $b=0.8$.
- For Poisson arrivals (uniform), bias factor is 0.5 .

Entropy plots

- An entropy plot plots entropy vs. resolution.
- From time series data, begin with resolution $\mathrm{R}=$ T/2.
- Record entropy H_{R}

Entropy plots

- An entropy plot plots entropy vs. resolution.
- From time series data, begin with resolution $\mathrm{R}=$ T/2.
- Record entropy H_{R}
- Recursively take finer resolutions.

Entropy plots

- An entropy plot plots entropy vs. resolution.
- From time series data, begin with resolution r= T/2.
- Record entropy H_{R}
- Recursively take finer resolutions.

Definitions

- Entropy measures the non-uniformity of histogran ana given resolution.
- We define entropy of our sequence at given R :

$$
H_{p}=-\sum_{t=1}^{2^{R}} p(t) \log _{2} p(t)
$$

where $p(t)$ is percentage of posts from a blog on interval t, R is resolution and 2^{R} is number of intervals.

b-model

- For a b-model (and self similar cases), entropy plot is linear. The slope s will tell us the bias factor.
- Lemma: For traffic generated by a b-model, the bias factor b obeys the equation:

$$
s=-b \log _{2} b-(1-b) \log _{2}(1-b)
$$

- Self-similarity \rightarrow Linear plot

Entropy Plots

- Self-similarity \rightarrow Linear plot
- Uniform: slope $s=1$. bias=. 5 Point mass: $s=0$. bias=1

Software

- Tensor Toolbox: Matlab add-in for tensors - http://csmr.ca.sandia.gov/~tgkolda/TensorToolbox/
- NetworkX- Python package to work with graphs easily (graph properties)
- https://networkx.lanl.gov/
- Proximity: relational knowledge discovery
- http://kdl.cs.umass.edu/proximity/index.html

Bibliography: Part 2

- Matrices and Tensors
- Demmel, Applied Numerical Linear Algebra
- Joliffe, Principal Component Analysis (2nd ed) Springer, 2002.
- Gilbert Strang, Linear Algebra and its Applications (4th ed) Brooks \& Cole, 2005.
- Faloutsos, C.; Kolda, T. G. \& Sun, J. (2007), Mining large graphs and streams using matrix and tensor tools., in.,'SIGMOD Conference', ACM, , pp. 1174.
- Ranking
- Kleinberg, J. M. (1999), 'Authoritative sources in a hyperlinked environment', Journal of the ACM 46(5), 604--632.
- Page, L.; Brin, S.; Motwani, R. \& Winograd, T. (1998),'The PageRank Citation Ranking: Bringing Order to the Web', Technical report, Stanford Digital Library Technologies Project.
- T. Kolda and B. Bader. The TOPHITS model for higher-order web link analysis. In: Workshop on Link Analysis, Counterterrorism and Security, 2006.
- Cross-association and co-clustering
-Chakrabarti, D. (2004), AutoPart: Parameter-Free Graph Partitioning and Outlier Detection., in JeanFrançois Boulicaut; Floriana Esposito; Fosca Giannotti \& Dino Pedreschi, ed.,'PKDD', Springer, , pp. 112-124.
- Dhillon, I.; Mallela, S. \& Modha, D. (2003), 'Information-theoretic co-clustering', Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, 89--98.
- Self-similarity
- Crovella, M. \& Bestavros, A. (1996), 'Self-Similarity in World Wide Web Traffic, Evidence and Possible Causes', Sigmetrics, 160-169.
- Schroeder, M. (1991), Fractals, Chaos, Power Laws: Minutes From an Infinite Paradise, W. H. Freeman.
- Shannon, C. E. \& Weaver, W. (1963), A Mathematical Theory of Communication, University of Illinois Press, Champaign, IL, USA.
- Wang, M.; Madhyastha, T.; Chang, N. H.; Papadimitriou, S. \& Faloutsos, C. (2002), 'Data Mining Meets Performance Evaluation: Fast Algorithms for Modeling Bursty Traffic', ICDE.

- Stretch break!

[^0]: Details:
 J. Kleinberg. Authoritative sources in a hyperlinked environment. SODA 1998

