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Part 3:
Case Studies
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Outline
● Part 1: How do networks form, evolve, collapse?
● Part 2: What tools can we use to study networks?
● Part 3: Case studies

– How do ideas diffuse through a network?
– How to detect communities?
– How do we detect anomalies in networks?
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Part 3: Case Studies
● Q4: How do ideas diffuse through a network?

– Cascades
– Epidemiological modeling of cascades
– Outbreak detection

● Q5: How can we extract communities?
– Using PCA on structure
– Factorization

● Q6: What sort of anomaly detection can we
perform?
– Fraud detection on E-bay
– Spam detection
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Cascading Behavior
in Large Blog Graphs

How does information propagate
over the blogosphere?

Blogs Posts

Links

Information cascade

4

J. Leskovec, M.McGlohon, C. Faloutsos, N. Glance,
M. Hurst.  Cascading Behavior in Large Blog
Graphs. SDM 2007.
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Immediate Goals
Temporal questions:  Does popularity have half-

life?
Topological questions:  What topological

patterns do posts and blogs follow?  What
shapes to cascades take on?  Stars?  Chains?
Something else?

Models: Can we build a generative model that
mimics properties of cascades?
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Cascades on the
Blogosphere

Cascade is graph induced by a
time ordered propagation of
information (edges)

Cascades
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Blogosphere
blogs + posts

Blog network
links among blogs

Post network
links among posts
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Blog data
 45,000 blogs participating in cascades
 All their posts for 3 months (Aug-Sept ‘05)
 2.4 million posts
 ~5 million links (245,404 inside the dataset)
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Temporal Observations
How does post popularity change over time?
• Does popularity decay at a constant rate?

• With an exponential (“half life”)?
Linear-linear scale Log-linear scale Log-log scale

Time

# in-links
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Temporal Observations
How does post popularity change over time?

Post popularity dropoff follows a power law...

log(days after post)
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Temporal Observations
How does post popularity change over time?

Post popularity dropoff follows a power law identical
to that found in communication response times in
[Vazquez+2006].

Observation 1:  The
probability that a post
written at time tp
acquires a link at time
tp + Δ is:

p(tp+Δ) ∝ Δ-1.5

log(days after post)

Cascades
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What is topology of blogs?
44,356 nodes, 122,153 edges.  Half of blogs belong
to largest connected component.

Number of blog in-links (log scale)
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In- and out-degree follow power law distribution.  In-degree
exponent -1.7, out-degree exponent -3.

Strong rich-get-richer phenomena.
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Post Network

Post in-degree

C
ou

nt

2.4M nodes, 250K edges
Both in- and out-degree follow power laws.  In-degree exponent
-2.1, out-degree exponent -3.
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Number of blog-blog links
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Topological patterns:
Cascades

Procedure for gathering cascades:
Find all initiators (nodes with out-degree 0)
Follow in-links
Produces directed acyclic graph
Count cascade shapes (use our multi-level graph

isomorphism testing algorithm)
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Topological Observations
How do we measure how information flows

through the network?

Common cascade shapes extracted using algorithms
in [Leskovec, Singh, Kleinberg; PAKDD 2006].
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Topological Observations

Cascade size distributions also follow power law.

What graph properties do cascades exhibit?

Observation 2:  The probability of observing a
cascade on n nodes follows a Zipf distribution:

p(n) ∝ n-2

Cascade size (# of nodes)
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Topological Observations
What graph properties do cascades exhibit?

Stars and chains also follow a power law, with
different exponents (star -3.1, chain -8.5).

Size of chain (# nodes)
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Epidemiological models
● We consider modeling cascade generation as an

epidemic, with ideas as viruses.
● We use the SIS (flu-like) model:

– At any time, an entity is in one of two states:
susceptible or infected.

– One parameter β determines how easily spreading
conversations are.

– [Hethcote2000]
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Cascade Generation Model

B1
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Cascade Generation Model

B1 B2

B3 B4

0. Begin with Blog Net, but ignore edge
weights.

Example–

B1 links to B2,
B2 links to B1,
B4 links to B2
and B1, as well
as itself

B3 is isolated,
linking to itself.
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Cascade Generation Model

B1 B2

B3 B4

1.  Randomly pick a blog to infect,
add node to cascade

B1
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Cascade Generation Model

B1 B2

B3 B4

2.  Infect each in-linked neighbor with
probability β.

B1
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Cascade Generation Model

B1 B2

B3 B4

2.  Infect each in-linked neighbor with
probability β.

B1

INFECT

DO NOT
INFECT
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Cascade Generation Model

B1 B2

B3 B4

3.  Add infected neighbors to cascade.

B1

B4
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Cascade Generation Model

B1 B2

B3 B4

4.  Set “old” infected nodes to
uninfected.

B1

B4
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Cascade Generation Model

B1 B2

B3 B4

4.  Set “old” infected nodes to
uninfected.  Repeat steps 2-4 until no
nodes are infected.

B1

B4
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Cascade Generation Model

B1 B2

B3 B4

4.  Set “old” infected nodes to
uninfected.  Repeat steps 2-4 until no
nodes are infected.

B1

B4DO NOT
INFECT
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Cascade Generation Model

B1 B2

B3 B4

4.  Set “old” infected nodes to
uninfected.  Repeat steps 2-4 until no
nodes are infected.

B1

B4

Completed
cascade!
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Experimental Results

Most frequent cascades

Cascade size
C
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nt

Cascade node in-degree
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Size of star cascade
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Size of chain cascade
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Generative model
produces realistic
cascades

β=0.025
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Conclusions
● Temporal observations

– Post popularity-dropoff follows power law
(exponent= -1.5)

● Topological observations
– Power-laws in degree distribution, cascade sizes
– “Stars” are more common than “chains”

● Cascade generating model
– Based on epidemiology
– Matches frequent cascades, size power laws
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Part 3: Case Studies
● Q4: How do ideas diffuse through a network?

– Cascades
– Epidemiological modeling of cascades
– Outbreak detection

● Q5: How can we extract communities?
– Using PCA on structure
– Factorization

● Q6: What sort of anomaly detection can we
perform?
– Fraud detection on E-bay
– Spam detection
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Outbreak detection
● Problems of finding sources of

contamination in water
networks and finding “hot”
stories on blogs are isomorphic.
– Minimize time to detection,

population affected
– Maximize probability of detection.
– Minimize sensor placement cost.

Blogs Posts

Links

Information cascade
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CELF: Main idea
● Given a graph G(V,E)
● and a budget of B sensors
● and data on how contaminations spread over the

network:
– for each contamination i we know the time T(i, u) when it

contaminated node u

● Minimize time to detect outbreak
● CELF algorithm uses submodularity and lazy

evaluation
J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos,
J. VanBriesen, N. Glance. "Cost-effective Outbreak
Detection in Networks” KDD 2007
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Blogs: Comparison to
heuristics

Benefit
(higher=
better)
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● k PA score Blog NP IL OLO OLA

● 1 0.1283 http://instapundit.com 4593 4636 1890 5255

● 2 0.1822 http://donsurber.blogspot.com 1534 1206 679 3495

● 3 0.2224 http://sciencepolitics.blogspot.com 924 576 888 2701

● 4 0.2592 http://www.watcherofweasels.com 261 941 1733 3630

● 5 0.2923 http://michellemalkin.com 1839 12642 1179 6323

● 6 0.3152 http://blogometer.nationaljournal.com 189 2313 3669 9272

● 7 0.3353 http://themodulator.org 475 717 1844 4944

● 8 0.3508 http://www.bloggersblog.com 895 247 1244 10201

● 9 0.3654 http://www.boingboing.net 5776 6337 1024 6183

● 10 0.3778 http://atrios.blogspot.com 4682 3205 795 3102

“Best 10 blogs to read”
NP - number of posts, IL- in-links, OLO- blog out links, OLA- all out links

http://www.cs.cmu.edu/~jure/blogs/blogs-uc-pa.html
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Part 3: Case Studies
● Q4: How do ideas diffuse through a network?

– Cascades
– Epidemiological modeling of cascades
– Outbreak detection

● Q5: How can we extract communities?
– Using PCA on structure
– Factorization

● Q6: What sort of anomaly detection can we
perform?
– Fraud detection on E-bay
– Spam detection
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Blogs and structure
• Cascades take on different shapes (sorted by

frequency):

How can we use cascades 
to identify communities?
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PCA on cascade types
• Perform PCA on

sparse matrix.
• Use log(count+1)
• Project onto 2 PC…

.01…

.07.67…

1.12.1…

5.1…

4.2…
.073.41.13.2boingboing

.092.14.6slashdot

…………

~9,000 cascade types

~4
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28

PCA on cascade types
• Observation: Content of blogs and cascade

behavior are often related.

• Distinct clusters for
“conservative” and
“humorous” blogs
(hand-labeling).

M. McGlohon, J. Leskovec, C.
Faloutsos, M. Hurst, N.
Glance. Finding Patterns in
Blog Shapes and Blog
Evolution. ICWSM 2007.
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behavior are often related.
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M. McGlohon, J. Leskovec, C.
Faloutsos, M. Hurst, N.
Glance. Finding Patterns in
Blog Shapes and Blog
Evolution. ICWSM 2007.
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Part 3: Case Studies
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Community Factorization
● Yun Chi, Shenghuo Zhu, Xiaodan Song, Junichi

Tatemura, Belle L. Tseng. Structural and
temporal analysis of the blogosphere through
community factorization.  KDD 07

● Main idea: Use tensor factorization to identify
subgraphs over time.
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Community Factorization
Results

● Hurricane Katrina
community

● Blog info community
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E-bay Fraud detection

Detects
‘non-delivery’ fraud:
seller takes $$ 
and disappears

Shashank Pandit, Duen Horng Chau, Samuel
Wang, and Christos Faloutsos. NetProbe: A Fast
and Scalable System for Fraud Detection in
Online Auction Networks  WWW 07.
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E-bay Fraud detection - NetProbe
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Idea: ‘Accomplices’, and
Belief Propagation

● 3 types of nodes: honest, fraud, accomplices
● ‘Accomplices’ never do fraud

– give high ratings to fraudsters-to-be

Belief propagation intuition:
● If I am honest, my neighbors are either honest or

‘accomplices’
● If I’m an accomplice, my neighbors are either

honest or fraud
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Spam detection
● Kolari, Java, Finin, 2006:
● Studying link structure can help detect spam in

blogs.
● Splogs may deviate from power law degree

distribution found in authentic blogs.

55
indegree outdegree
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Conclusion
● Presented patterns found in real graphs (power-

law degrees, giant connected component,
densification, shrinking diameter)

● Demonstrated tools to solve problems (matrix
tools, tensors, self-similarity)

● Showed some examples of using these tools for
applications to social media (viral marketing,
community detection, anomaly detection).
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Thanks
● Jimeng Sun (IBM)

● Tamara Kolda (Sandia)

● Deepay Chakrabarti
(Yahoo!)

● Jure Leskovec (CMU)
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Epidemics in Blogspace, in 'WI '05: Proceedings of the
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USA, pp. 207--214.
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– Equiluz, V. M. & Klemm, K. (2002), 'Epidemic threshold in
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● Community detection
– Chi, Y.; Zhu, S.; Song, X.; Tatemura, J. & Tseng, B.

L. (2007), Structural and temporal analysis of the
blogosphere through community factorization, in
'KDD '07: Proceedings of the 13th ACM SIGKDD
international conference on Knowledge discovery
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Shapes and Blog Evolution, in 'International
Conference on Weblogs and Social Media'.
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● Spam/Anomaly detection
– Kolari, P.; Java, A. & Finin, T. (2006), Characterizing

the Splogosphere, in 'Proceedings of the 3rd Annual
Workshop on Weblogging Ecosystem: Aggregation,
Analysis and Dynamics, 15th World Wide Web
Conference',  University of Maryland, Baltimore
County, .

– Pandit, S.; Chau, D. H.; Wang, S. & Faloutsos, C.
(2007), Netprobe: a fast and scalable system for
fraud detection in online auction networks, in 'WWW
'07: Proceedings of the 16th international conference
on World Wide Web', ACM, New York, NY, USA, pp.
201--210.
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Questions?
● Mary McGlohon

mmcgloho@cs.cmu.edu
www.cs.cmu.edu/~mmcgloho

● Christos Faloutsos
christos@cs.cmu.edu
www.cs.cmu.edu/~christos


